Polynomials By: Sagar Aggarwal

Contents

Introduction

- \triangleright A polynomial of degree 1 is called a **linear polynomial**. For example, 2x 3, $\sqrt{3}$ x + 5, y + $\sqrt{2}$, x 2 , 3z $+$ 4, $\sqrt{2}$ u $+$ 1, etc., are all linear polynomials. 11 3
- \triangleright A polynomial of degree 2 is called a **quadratic polynomial.** The name 'quadratic' has been derived from the word 'quadrate', which means 'square'. For example, 2x 2 +3x- $\,$ 2, y 2 -2,

$$
2-x^2+\sqrt{3}x,\frac{u}{3}-2u^2+5,\sqrt{5}v^2-\frac{2}{3}v,4z^2+\frac{1}{7}
$$
 are quadratic polynomials. More

generally, any quadratic polynomial in x is of the form ax^2+bx+c , where a, b, c are real numbers and $a \ne 0$.

 \triangleright A polynomial of degree 3 is called a **cubic polynomial**. For example, 2-x³, x3, $\sqrt{2}$ x³, $3-x^2+x^3$, $3x^3-2x^2+x-1$ are cubic polynomials. The most general form of a cubic polynomial is ax^3+bx^2+cx+d , where a, b, c, d are real numbers and $a\neq0$.

Introduction (Contd..)

- \triangleright If p(x) is a polynomial in x, and if k is any real number, then the value obtained by replacing x by k in $p(x)$, is called the value of $p(x)$ at $x = k$, and is denoted by $p(k)$. For example, let us consider a polynomial $p(x)=x^2-3x-4$. Then, the value of $p(x)$ at $x=2$, is qiven by $p(2)=2^2-3(2)-4=4-6-4=-6$.
- \triangleright A real number k is said to be a zero of a polynomial $p(x)$, if $p(k)=0$. For example, let $p(x)=x^2-3x-4$. Now, $p(4)=4^2-3(4)-4=16-12-4=0$. So, 4 is the zero of polynomial $p(x)=x^2-3x-4$.
- **►** If k is a zero of p(x)=ax+b, then p(k)=ak+b=0, i.e., k= $-\frac{b}{a}$. So the zero of the linear $a \sim a$

polynomial $ax+b$ is $-\frac{b}{a} = \frac{(constant \tan b)}{2}$. For example, if k is a zero of $p(x)=2x+3$, then p(k)=0 gives us 2k+3=0, i.e., k= $-\frac{3}{\cdot}$. Coefficient of x (Constant term) E_0 s avample a Coefficient of $-\frac{b}{-} = \frac{-(\text{Constant term})}{\text{For e}}$ 2

Geometrical Meaning of the Zeroes of a Polynomial

The following three cases can happen about the shape of the graph $y=ax^2+bx+c$: Case (i): Here, the graph cuts x-axis at two distinct points A and A′. The x-coordinates of A and A' are the two zeroes of the quadratic polynomial ax^2+bx+c in this case (see Fig. 1.1).

Geometrical Meaning of the Zeroes of a Polynomial (Contd..)

Case (ii): Here, the graph cuts the x-axis at exactly one point, i.e., at two coincident points. So, the two points A and A′ of Case (i) coincide here to become one point A (see Fig. 1.2). The x-coordinate of A is the only zero for the quadratic polynomial ax^2+bx+c in this case.

Geometrical Meaning of the Zeroes of a Polynomial (Contd..)

Case (iii): Here, the graph is either completely above the x-axis or completely below the x-axis. So, it does not cut the x-axis at any point (see Fig. 1.3). So, the quadratic polynomial ax^2+bx+c has **no zero** in this case.

Geometrical Meaning of the Zeroes of a Polynomial (Contd..)

- \triangleright We can try to draw the graph of cubic equations. We will find that there are at most 3 zeroes for any cubic polynomial. In other words, any polynomial of degree 3 can have at most three zeroes.
- **EXEMARE:** In general, given a polynomial $p(x)$ of degree n, the graph of $y = p(x)$ intersects the x-axis at atmost n points. Therefore, a polynomial $p(x)$ of degree n has at most n zeroes.

 \triangleright In general, if α^* and β^* are the zeroes of the quadratic polynomial $p(x)=ax^2+bx+c$, $a\neq 0$, then you know that x–α and x–β are the factors of p(x). Therefore,

 $ax^2+bx+c=k(x-\alpha)(x-\beta)$, where k is a constant

 $=$ k[x²–(α + β)x+αβ]

 $=kx^2-k(\alpha+\beta)x+k\alpha\beta$

Comparing the coefficients of x^2 , x and constant terms on both the sides, we get a=k, b =- $k(\alpha + \beta)$ and c= $k\alpha\beta$.

This gives sum of zeroes=
$$
\alpha + \beta = -\frac{b}{a} = \frac{-(\text{Coefficient of x})}{\text{Coefficient of x}^2}
$$

product of zeroes= $\alpha\beta = \frac{c}{a} = \frac{\text{Constant term}}{\text{Coefficient of x}^2}$

 $*$ α, β are Greek letters pronounced as 'alpha' and 'beta' respectively. We will use later one more letter 'γ' pronounced as 'gamma'.

Presentation by Sagar Aggarwal 9

 \triangleright Example 1: Find the zeroes of the quadratic polynomial $x^2+7x+10$, and verify the relationship between the zeroes and the coefficients.

Solution: We have $x^2 + 7x + 10 = (x+2)(x+5)$

So, the value of $x^2+7x+10$ is zero when $x+2=0$ or $x+5=0$, i.e., when $x=-2$ or $x=-5$. Therefore, the zeroes of $x^2+7x+10$ are -2 and -5. Now,

Sum of zeroes= $-2+(-5)=-7=$ Product of zeroes= $(-2)x(-5)=10=\frac{10}{1}=\frac{\text{Constant term}}{\text{Coefficient of x}^2}$ (Coefficient of x) 1 Coefficient of $\frac{7}{2}$ = $\frac{-(\text{Coefficient of x})}{\frac{1}{2}}$ − Constant term 1 Coefficient of x^2 $\frac{10}{10}$ = $\frac{\text{Constant term}}{\text{္}$

In general, it can be proved that if α , β , γ are the zeroes of the cubic polynomial ax^3+bx^2+cx+d , then

Sum of zeroes=
$$
\alpha + \beta + \gamma = \frac{-b}{a} = \frac{-(\text{Coefficient of } x^2)}{\text{Coefficient of } x^3}
$$

\nSum of the products of zeroes taken two at a time= $\alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a} = \frac{\text{Coefficient of } x}{\text{Coefficient of } x^3}$
\nProduct of zeroes= $\alpha\beta\gamma = \frac{-d}{a} = \frac{-(\text{Constant term})}{\text{Coefficient of } x^3}$

Presentation by Sagar Aggarwal 11

 \triangleright Example 2*: Verify that 3, -1, $\frac{1}{2}$ are the zeroes of the cubic polynomial p(x)=3x³-5x²-11x-3, 3 $^{-1}_{-}$ are the zeroes of the

and then verify the relationship between the zeroes and the coefficients. **Solution**: Comparing the given polynomial with $ax^3 + bx^2 + cx + d$, we get $a=3, b=-5, c=-11, d=-3.$ Further $p(3)=3\times3^{3}-(5\times3^{2})-(11\times3)-3=81-45-33-3=0$ $p(-1)=3\times(-1)^{3}-5\times(-1)^{2}-11\times(-1)-3=-3-5+11-3=0,$ $\overline{0}$ 3 2 a contract to the contract of the contract o 3 2 2 $\overline{2}$ $3 = -1$ $+$ $=$ 0 3 3 3 11 2 2 2 9 3 3 3 5 11 2 2 2 \sim 9 9 3 3 3 $=-\frac{1}{2}-\frac{5}{4}+\frac{11}{2}-3=-\frac{2}{4}+\frac{2}{2}=0$ $p\left(-\frac{1}{3}\right) = 3 \times \left(-\frac{1}{3}\right) - 5 \times \left(-\frac{1}{3}\right) - 11 \times \left(-\frac{1}{3}\right) - 3$
= $\left(-\frac{1}{3}\right) = \frac{1}{3} - \frac{1}{3} = \frac{2}{3} - \frac{2}{3} = \frac{2}{3} = 0$ 3) $1 \setminus$ $|11 \times | |-3$ 3) (3) 1 $\binom{1}{1}$ $5 \times$ | $|$ $11 \times$ | $| 3$ 3) (3) (3) 1 ^o $(1)^{2}$ $(1)^{2}$ $3 \times$ | $|$ $-5 \times$ | $|$ $-11 \times$ 3) (3) (3) $1)$ (1) (1)² $|p| - \frac{1}{2}| = 3 \times |- \frac{1}{2}| - 3 \times | 3 \angle 12 \angle 2$ \sim -3 \int $\frac{1}{2}$ $\Big)$ and $\Big)$ $\left|-\frac{1}{2}\right| - 3$ $\begin{pmatrix} 3 \end{pmatrix}$ $\begin{pmatrix} 1 \end{pmatrix}$ $|-11 \times |-\frac{1}{2}| - 3$ $\left(\begin{array}{c} 1 \end{array} \right)$ $\Big|^{2}$ 11 $\Big(1 \Big)$ 2 $\left|-\frac{1}{2}\right|$ -11x $\left|-\frac{1}{2}\right|$ - $\begin{pmatrix} 3 \end{pmatrix}$ $\begin{pmatrix} 3 \end{pmatrix}$ $\begin{pmatrix} 1 \\ 1 \end{pmatrix}^2$ $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $\vert -5 \times \vert -\frac{1}{2} \vert -11 \times \vert -\frac{1}{2} \vert -3$ $\begin{pmatrix} 3 \end{pmatrix}$ \int_{0}^{3} ϵ $\left(1\right)^{2}$ $\left(1\right)^{2}$ $\left|-\frac{1}{2}\right|$ -5x $\left|-\frac{1}{2}\right|$ - $\begin{pmatrix} 3 \end{pmatrix}$ (3) $\begin{pmatrix} 1 \end{pmatrix}^3$ $\begin{pmatrix} 1 \end{pmatrix}^2$ $\left| = 3 \times \right| - \frac{1}{2} \left| -5 \times \right| - \frac{1}{2} \left| -11 \times \right| - \frac{1}{2}$ $\begin{pmatrix} 3 \end{pmatrix}$) Ω $(1)^{3}$ τ $($ $\left|-\frac{1}{2}\right| = 3 \times \left|-\frac{1}{2}\right| - \frac{1}{2}$ $\begin{pmatrix} 3 \end{pmatrix}$ $\begin{pmatrix} 3 \end{pmatrix}$ −

* Not from the examination point of view.

Therefore, 3, -1 and $-\frac{1}{2}$ are the zeroes of 3x³-5x²-11x-3. 3 1 −

So, we take α=3, β=–1 and γ= $^{-}\frac{1}{3}$ 1 −

Now,
\n
$$
\alpha + \beta + \gamma = 3 + (-1) + \left(-\frac{1}{3}\right) = 3 - 1 - \frac{1}{3} = \frac{9 - 3 - 1}{3} = \frac{5}{3} = \frac{-(-5)}{3} = \frac{-b}{a}
$$
\n
$$
\alpha\beta + \beta\gamma + \gamma\alpha = 3 \times (-1) + (-1) \times \left(-\frac{1}{3}\right) + \left(-\frac{1}{3}\right) \times 3 = -3 + \frac{1}{3} - 1 = \frac{-11}{3} = \frac{c}{a}
$$
\n
$$
\alpha\beta\gamma = 3 \times (-1) \times \left(-\frac{1}{3}\right) = 1 = \frac{1}{1} = \frac{-(-3)}{3} = \frac{-d}{a}
$$

Presentation by Sagar Aggarwal 13

 $a \sim a$

 $\mathbf c$

Division Algorithm for Polynomials

 \triangleright We know that, Dividend=Divisor \times Quotient+Remainder Division Algorithm for polynomials says that If $p(x)$ and $q(x)$ are any two polynomials with $q(x) \neq 0$, then we can find polynomials $q(x)$ and r(x) such that

 $p(x)=g(x)\times q(x)+r(x),$

where $r(x)=0$ or degree of $r(x)$ < degree of $q(x)$.

 \triangleright Example 3: Divide $3x^2-x^3-3x+5$ by $x-1-x^2$, and verify the division algorithm.

Solution: Note that the given polynomials are not in standard form. To carry out division, we first write both the dividend and divisor in decreasing orders of their degrees.

So, dividend= $-x^3+3x^2-3x+5$ and divisor= $-x^2+x-1$.

 $x-2$ $-x^2 + x - 1$
 $-x^3 + 3x^2 - 3x + 5$
 $-x^3 + x^2 - x$ $2x^2-2x+5$ $2x^2-2x+2$ 3

Division Algorithm for Polynomials (Contd..)

Division process is shown on the right side.

```
We stop here since degree (3)=0<2=degree (-x^2+x-1).
```

```
So, quotient=x-2, remainder=3.
```
Now,

Divisor×Quotient+Remainder

```
= (-x^2+x-1)(x-2)+3=-x^3+x^2-x+2x^2-2x+2+3=-x^3+3x^2-3x+5
```
=Dividend

In this way, the division algorithm is verified.

Division Algorithm for Polynomials $(Contd.)$

 \triangleright Example 4: Find all the zeroes of 2x4 - 3x3 - 3x2 + 6x - 2, if you know that two of its zeroes are $\sqrt{2}$ and $-\sqrt{2}$.

Solution: Since two zeroes are $\sqrt{2}$ and - $\sqrt{2}$, (x- $\sqrt{2}$)(x+ $\sqrt{2}$)=x²-2 is a factor of the given polynomial. Now, we divide the given polynomial by x^2-2 .

$$
x^{2}-2\sqrt{\frac{2x^{4}-3x^{3}+3x^{2}+6x-2}{2x^{4}}}
$$

\n=
$$
3x^{3}+x^{2}+6x-2
$$

\n=
$$
3x^{3}+x^{2}+6x-2
$$

\n=
$$
3x^{3}+x^{2}+6x
$$

\n=
$$
3x^{2}+6x
$$

\n= $$

 $=$ $-3x$

2

3

Division Algorithm for Polynomials (Contd..)

So, $2x^4-3x^3-3x^2+6x-2=(x^2-2)(2x^2-3x+1)$.

Now, by splitting $-3x$, we factorise $2x^2-3x+1$ as $(2x-1)(x-1)$. So, its zeroes are given by

 $x=\frac{1}{2}$ and $x=1$. Therefore, the zeroes of the given polynomial are $\sqrt{2}$, $-\sqrt{2}$, $\frac{1}{2}$ and 1. 2 1 2 , $\lnot\vee 2$ 2 1

Summary

In this chapter, you have studied the following points:

- 1. Polynomials of degrees 1, 2 and 3 are called linear, quadratic and cubic polynomials respectively.
- 2. A quadratic polynomial in x with real coefficients is of the form $ax^2 + bx + c$, where a, b, c are real numbers with $a \ne 0$.
- 3. The zeroes of a polynomial p(x) are precisely the x-coordinates of the points, where the graph of $y=p(x)$ intersects the x-axis.
- 4. A quadratic polynomial can have at most 2 zeroes and a cubic polynomial can have at most 3 zeroes.
- **5.** If α and β are the zeroes of the quadratic polynomial ax²+bx+c, then

$$
\alpha + \beta = \frac{-b}{a}, \ \alpha\beta = \frac{c}{a}
$$

Summary (Contd..)

6. If α , β , γ are the zeroes of the cubic polynomial $ax^3+bx^2+cx+d=0$, then $\alpha + \beta + \gamma = -b$ $\alpha\beta+\beta\gamma+\gamma\alpha= c$ and $\alpha\beta\gamma = \frac{-d}{\alpha}$ a $a \sim a$ $\mathbf c$ $\frac{-d}{a}$

7. The division algorithm states that given any polynomial p(x) and any non-zero polynomial $q(x)$, there are polynomials $q(x)$ and $r(x)$ such that $p(x)=q(x)q(x)+r(x)$, where $r(x)=0$ or degree $r(x)$ < degree $q(x)$.

THANK YOU

Presentation by Sagar Aggarwal 20